

GNI86AY Inertial Measurement Unit Brief Datasheet

1. Overview

The GNI86AY Micro-inertial Measurement Unit (IMU) is a small, high-performance, low-cost inertial measurement unit (IMU) based on MEMS technology, which can measure 3-axis angular velocities and accelerations.

This device provides stable measurement performance as a result of its error compensation of temperature and axes. It ensures the stable and excellent performance of the product under static and on-board dynamic conditions, and ensures that it still provides excellent and reliable measurement data for users under harsh environmental conditions.

Product features

- a) Based on MEMS Process;
- b) Digital Gyros & Accelerometers;
- c) High Speed Processor Embedded;
- d) Compensation & Calibration;
- e) Low Power, Small Size;
- f) High tolerance.

Application field

- a) Integrated Navigation Systems & Inertial Guidance Systems
- b) Flight Control Guidance systems
- c) Attitude Heading Reference Systems (AHRS)
- d) Stabilization of Antennas, Cameras and Platforms

2. Package information

Figure 2.1 shows GNI86AY outline and mechanical data.

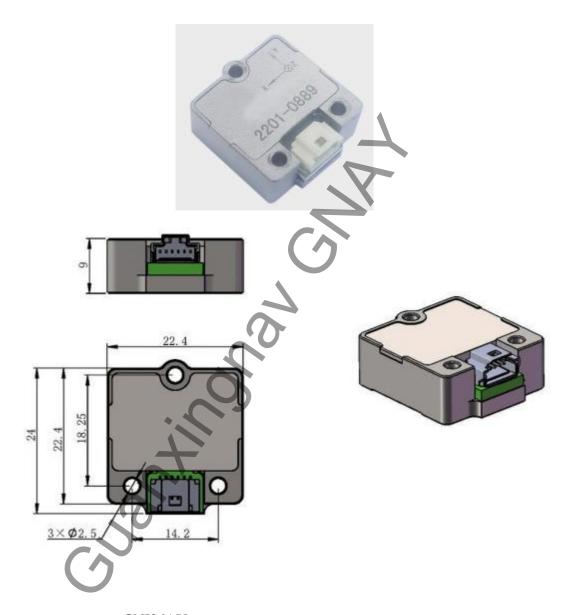


Figure 2.1 GNI86AY package outline and mechanical data (units: mm)

3. GNI86AY specifications

Gyros performance	
Range	±250 °/s
Bias in Full temperature (1σ,10s on average)	≤150 °/h
Bias Stability (1σ,10s on average)	≤10 °/h
Bias Repeatability	≤10 °/h
Angle Random Walk	≤0.25 °/√h
Scale Factor Non-linearity	≤50 ppm
Installation error	≤0.7°
Bandwidth (-3 dB)	≥100 Hz
Accelerometers performance	
Range	±60 g
Bias in Full temperature (1σ , 10 s on average)	≤2.5 mg
Bias Stability (1σ, 10s on average)	≤0.2 mg
Bias Repeatability	≤0.2 mg
Non-linearity	≤200 ppm
Installation error	≤0.7°
Bandwidth (-3 dB)	≥100 Hz
System performance	
Output data rate	200 Hz
Weight	≤25 g
Size	24 mm×22.4 mm×9 mm
Supply Voltage	5±0.3 V
Power Consumption	≤0.3 W
Interface	UART
Connector	Molex
Operating Temp.	-50 °C~+85 °C
Storage Temp.	-50 °C~+95 °C

4. Pin description and Digital interfaces

The definition of pins is shown in Table 4.1

Table 4.1 Pin connection

Name	Function
VCC(+5V)	Power supply
VGND	Power ground
Tx-	Transmit negative
Tx+	Transmit positive